Search results
Results From The WOW.Com Content Network
The natural "Lebesgue measure" on S 1 is then the push-forward measure f ∗ (λ). The measure f ∗ (λ) might also be called "arc length measure" or "angle measure", since the f ∗ (λ)-measure of an arc in S 1 is precisely its arc length (or, equivalently, the angle that it subtends at the centre of the circle.)
For example, if the map φ is not surjective, there is no natural way to define such a pushforward outside of the image of φ. Also, if φ is not injective there may be more than one choice of pushforward at a given point. Nevertheless, one can make this difficulty precise, using the notion of a vector field along a map.
William Feller, in 1949, used the names "forward equation" and "backward equation" for his more general version of the Kolmogorov's pair, in both jump and diffusion processes. [1] Much later, in 1956, he referred to the equations for the jump process as "Kolmogorov forward equations" and "Kolmogorov backward equations". [3]
X is a Brownian motion with respect to P, i.e., the law of X with respect to P is the same as the law of an n-dimensional Brownian motion, i.e., the push-forward measure X ∗ (P) is classical Wiener measure on C 0 ([0, ∞); R n). both X is a martingale with respect to P (and its own natural filtration); and
The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes.In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. [1]
Pushforward measure, measure induced on the target measure space by a measurable function; Pushout (category theory), the categorical dual of pullback; Direct image sheaf, the pushforward of a sheaf by a map; Fiberwise integral, the direct image of a differential form or cohomology by a smooth map, defined by "integration on the fibres"
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...