Search results
Results From The WOW.Com Content Network
In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...
Descartes' rule of signs asserts that the difference between the number of sign variations in the sequence of the coefficients of a polynomial and the number of its positive real roots is a nonnegative even integer. It results that if this number of sign variations is zero, then the polynomial does not have any positive real roots, and, if this ...
However, in the case of polynomials there are other methods such as Descartes' rule of signs, Budan's theorem and Sturm's theorem for bounding or determining the number of roots in an interval. They lead to efficient algorithms for real-root isolation of polynomials, which find all real roots with a guaranteed accuracy.
In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.
In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation + + + = with integer coefficients and ,.
takes a negative value for some positive real value of x. In the remaining of the section, suppose that a 0 ≠ 0. If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term.
The oldest method for computing the number of real roots, and the number of roots in an interval results from Sturm's theorem, but the methods based on Descartes' rule of signs and its extensions—Budan's and Vincent's theorems—are generally more efficient. For root finding, all proceed by reducing the size of the intervals in which roots ...
Sturm's theorem provides a way for isolating real roots that is less efficient (for polynomials with integer coefficients) than other methods involving Descartes' rule of signs. However, it remains useful in some circumstances, mainly for theoretical purposes, for example for algorithms of real algebraic geometry that involve infinitesimals. [3]