Ad
related to: standard normal distribution table statistics
Search results
Results From The WOW.Com Content Network
In statistics, a standard normal table, also called the unit normal table or Z table, [1] is a mathematical table for the values of Φ, the cumulative distribution function of the normal distribution.
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...
The skew normal distribution; Student's t-distribution, useful for estimating unknown means of Gaussian populations. The noncentral t-distribution; The skew t distribution; The Champernowne distribution; The type-1 Gumbel distribution; The Tracy–Widom distribution; The Voigt distribution, or Voigt profile, is the convolution of a normal ...
In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96, meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
In probability theory and statistics, Student's t distribution (or simply the t distribution) is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.
Looking up the z-score in a table of the standard normal distribution cumulative probability, we find that the probability of observing a standard normal value below −2.47 is approximately 0.5 − 0.4932 = 0.0068.
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.