When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. UTF-8 - Wikipedia

    en.wikipedia.org/wiki/UTF-8

    Only a small subset of possible byte strings are error-free UTF-8: several bytes cannot appear; a byte with the high bit set cannot be alone; and in a truly random string a byte with a high bit set has only a 1 ⁄ 15 chance of starting a valid UTF-8 character. This has the (possibly unintended) consequence of making it easy to detect if a ...

  3. C string handling - Wikipedia

    en.wikipedia.org/wiki/C_string_handling

    Some compilers or editors will require entering all non-ASCII characters as \xNN sequences for each byte of UTF-8, and/or \uNNNN for each word of UTF-16. Since C11 (and C++11), a new literal prefix u8 is available that guarantees UTF-8 for a bytestring literal, as in char foo [512] = u8 "φωωβαρ";. [7] Since C++20 and C23, a char8_t type ...

  4. Comparison of Unicode encodings - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_Unicode...

    UTF-8, UTF-16, UTF-32 and UTF-EBCDIC have these important properties but UTF-7 and GB 18030 do not. Fixed-size characters can be helpful, but even if there is a fixed byte count per code point (as in UTF-32), there is not a fixed byte count per displayed character due to combining characters .

  5. Comparison of data-serialization formats - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_data...

    (1 byte) True: \x08\x01 False: \x08\x00 (2 bytes) int32: 32-bit little-endian 2's complement or int64: 64-bit little-endian 2's complement: Double: little-endian binary64: UTF-8-encoded, preceded by int32-encoded string length in bytes BSON embedded document with numeric keys BSON embedded document Concise Binary Object Representation (CBOR ...

  6. Character encoding - Wikipedia

    en.wikipedia.org/wiki/Character_encoding

    Over time, character encodings capable of representing more characters were created, such as ASCII, the ISO/IEC 8859 encodings, various computer vendor encodings, and Unicode encodings such as UTF-8 and UTF-16. The most popular character encoding on the World Wide Web is UTF-8, which is used in 98.2% of surveyed web sites, as of May 2024. [2]

  7. Wide character - Wikipedia

    en.wikipedia.org/wiki/Wide_character

    A wide character refers to the size of the datatype in memory. It does not state how each value in a character set is defined. Those values are instead defined using character sets, with UCS and Unicode simply being two common character sets that encode more characters than an 8-bit wide numeric value (255 total) would allow.

  8. Null-terminated string - Wikipedia

    en.wikipedia.org/wiki/Null-terminated_string

    Some systems use "modified UTF-8" which encodes NUL as two non-zero bytes (0xC0, 0x80) and thus allow all possible strings to be stored. This is not allowed by the UTF-8 standard, because it is an overlong encoding, and it is seen as a security risk. Some other byte may be used as end of string instead, like 0xFE or 0xFF, which are not used in ...

  9. Character literal - Wikipedia

    en.wikipedia.org/wiki/Character_literal

    For example, an ASCII (or extended ASCII) scheme will use a single byte of computer memory, while a UTF-8 scheme will use one or more bytes, depending on the particular character being encoded. Alternative ways to encode character values include specifying an integer value for a code point, such as an ASCII code value or a Unicode code point.