Search results
Results From The WOW.Com Content Network
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
An orthocomplemented lattice is complemented. (def) 8. A complemented lattice is bounded. (def) 9. An algebraic lattice is complete. (def) 10. A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A ...
In particular, a bounded-lattice homomorphism (usually called just "lattice homomorphism") between two bounded lattices and should also have the following property: =, =. In the order-theoretic formulation, these conditions just state that a homomorphism of lattices is a function preserving binary meets and joins.
Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a p-algebra.
Every interval of a geometric lattice (the subset of the lattice between given lower and upper bound elements) is itself geometric; taking an interval of a geometric lattice corresponds to forming a minor of the associated matroid. Geometric lattices are complemented, and because of the interval property they are also relatively complemented. [7]
Bounded lattice: a lattice with a greatest element and least element. Complemented lattice: a bounded lattice with a unary operation, complementation, denoted by postfix ⊥. The join of an element with its complement is the greatest element, and the meet of the two elements is the least element.
The complete subgroup lattice for D4, the dihedral group of the square. This is an example of a complete lattice. In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum ().
In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type.Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.