When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complemented lattice - Wikipedia

    en.wikipedia.org/wiki/Complemented_lattice

    Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.

  3. Map of lattices - Wikipedia

    en.wikipedia.org/wiki/Map_of_lattices

    An orthocomplemented lattice is complemented. (def) 8. A complemented lattice is bounded. (def) 9. An algebraic lattice is complete. (def) 10. A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A ...

  4. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    Besides distributive lattices, examples of modular lattices are the lattice of submodules of a module (hence modular), the lattice of two-sided ideals of a ring, and the lattice of normal subgroups of a group. The set of first-order terms with the ordering "is more specific than" is a non-modular lattice used in automated reasoning.

  5. Pseudocomplement - Wikipedia

    en.wikipedia.org/wiki/Pseudocomplement

    In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement.In a lattice L with bottom element 0, an element x ∈ L is said to have a pseudocomplement if there exists a greatest element x* ∈ L with the property that x ∧ x* = 0.

  6. Complete lattice - Wikipedia

    en.wikipedia.org/wiki/Complete_lattice

    The complete subgroup lattice for D4, the dihedral group of the square. This is an example of a complete lattice. In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum ().

  7. Geometric lattice - Wikipedia

    en.wikipedia.org/wiki/Geometric_lattice

    Every interval of a geometric lattice (the subset of the lattice between given lower and upper bound elements) is itself geometric; taking an interval of a geometric lattice corresponds to forming a minor of the associated matroid. Geometric lattices are complemented, and because of the interval property they are also relatively complemented. [7]

  8. Compact element - Wikipedia

    en.wikipedia.org/wiki/Compact_element

    Compact elements cannot be approximated by elements strictly below them. On the other hand, it may happen that all non-compact elements can be obtained as directed suprema of compact elements. This is a desirable situation, since the set of compact elements is often smaller than the original poset—the examples above illustrate this.

  9. Wikipedia:WikiProject Mathematics/PlanetMath Exchange/06-XX ...

    en.wikipedia.org/wiki/Wikipedia:WikiProject...

    This page provides a list of all articles available at PlanetMath in the following topic: 06-XX Order, lattices, ordered algebraic structures. This list will be periodically updated. Each entry in the list has three fields: PM : The first field is the link to the PlanetMath article, along with the article's object ID.