Search results
Results From The WOW.Com Content Network
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.
Since the fourth century AD, Pythagoras has commonly been given credit for discovering the Pythagorean theorem, a theorem in geometry that states that in a right-angled triangle the area of the square on the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares of the other two sides. [14]
radical symbol (for square root) 1637 (with the vinculum above the radicand) René Descartes (La Géométrie) % percent sign: 1650 (approx.) unknown
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
The problem also demonstrates that the Egyptians were familiar with square roots. They even had a special hieroglyph for finding a square root. It looks like a corner and appears in the fifth line of the problem. Scholars suspect that they had tables giving the square roots of some often used numbers. No such tables have been found however. [11]
Vacaflores said there are several reasons for the square shape, including convenient packaging and easy preparation. The squares can be eaten out of the package or heated in a variety of ways.
A table of constants that includes the same approximation of the square root of 2 as YBC 7289 is the tablet YBC 7243. The constant appears on line 10 of the table along with the inscription, "the diagonal of a square". [2] [4] [5] The mathematical significance of this tablet was first recognized by Otto E. Neugebauer and Abraham Sachs in 1945.