Search results
Results From The WOW.Com Content Network
Some sink, source or node are equilibrium points. In mathematics , specifically in differential equations , an equilibrium point is a constant solution to a differential equation. Formal definition
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist.
The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov . In simple terms, if the solutions that start out near an equilibrium point x e {\displaystyle x_{e}} stay near x e {\displaystyle x_{e}} forever, then x e {\displaystyle x_{e}} is ...
In a two-player zero sum game defined on a continuous space, the equilibrium point is a saddle point. For a second-order linear autonomous system, a critical point is a saddle point if the characteristic equation has one positive and one negative real eigenvalue. [4]
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = 8 / 3 . The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz.
The concept of chemical equilibrium was developed in 1803, after Berthollet found that some chemical reactions are reversible. [4] For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions must be equal. In the following chemical equation, arrows point both ways to indicate equilibrium. [5]