When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  3. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  4. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    Commonly used metrics include the notions of precision and recall. In this context, precision is defined as the fraction of documents correctly retrieved compared to the documents retrieved (true positives divided by true positives plus false positives), using a set of ground truth relevant results selected by humans. Recall is defined as the ...

  5. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    In informational retrieval, the main ratios are the true positive ratios (row and column) – positive predictive value and true positive rate – where they are known as precision and recall. Cullerne Bown has suggested a flow chart for determining which pair of indicators should be used when. [1] Otherwise, there is no general rule for deciding.

  6. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    Two other commonly used F measures are the measure, which weights recall twice as much as precision, and the measure, which weights precision twice as much as recall. The F-measure was derived by van Rijsbergen (1979) so that F β {\displaystyle F_{\beta }} "measures the effectiveness of retrieval with respect to a user who attaches β ...

  7. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ⁠ = 1).

  8. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    In information retrieval, the positive predictive value is called precision, and sensitivity is called recall. Unlike the Specificity vs Sensitivity tradeoff, these measures are both independent of the number of true negatives, which is generally unknown and much larger than the actual numbers of relevant and retrieved documents.

  9. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Commonly used metrics include the notions of precision and recall. In this context, precision is defined as the fraction of documents correctly retrieved compared to the documents retrieved (true positives divided by true positives plus false positives), using a set of ground truth relevant results selected by humans. Recall is defined as the ...