When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example.

  3. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities ...

  4. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    Laminar boundary layer flow. The laminar boundary is a very smooth flow, while the turbulent boundary layer contains swirls or "eddies." The laminar flow creates less skin friction drag than the turbulent flow, but is less stable. Boundary layer flow over a wing surface begins as a smooth laminar flow. As the flow continues back from the ...

  5. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    Laminar flow occurs at lower velocities, below a threshold at which the flow becomes turbulent. The threshold velocity is determined by a dimensionless parameter characterizing the flow called the Reynolds number, which also depends on the viscosity and density of the fluid and dimensions of the channel. Turbulent flow is a less orderly flow ...

  6. Laminar–turbulent transition - Wikipedia

    en.wikipedia.org/wiki/Laminarturbulent_transition

    Reynolds’ 1883 experiment on fluid dynamics in pipes Reynolds’ 1883 observations of the nature of the flow in his experiments. In 1883 Osborne Reynolds demonstrated the transition to turbulent flow in a classic experiment in which he examined the behaviour of water flow under different flow rates using a small jet of dyed water introduced into the centre of flow in a larger pipe.

  7. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    Blood flow in straight sections of the arterial tree are typically laminar (high, directed wall stress), but branches and curvatures in the system cause turbulent flow. [2] Turbulent flow in the arterial tree can cause a number of concerning effects, including atherosclerotic lesions, postsurgical neointimal hyperplasia, in-stent restenosis ...

  8. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The transition from laminar to turbulent flow. Turbulence is flow characterized by recirculation, eddies, and apparent randomness. Flow in which turbulence is not exhibited is called laminar. The presence of eddies or recirculation alone does not necessarily indicate turbulent flow—these phenomena may be present in laminar flow as well.

  9. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    K-epsilon (k-ε) turbulence model [9] is the most common model used in computational fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two-equation model which gives a general description of turbulence by means of two transport equations (PDEs).