When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    These surfaces all have constant Gaussian curvature of 1, but, for either have a boundary or a singular point. do Carmo also gives three different examples of surface with constant negative Gaussian curvature, one of which is pseudosphere. [4] There are many other possible bounded surfaces with constant Gaussian curvature.

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    If a surface has constant Gaussian curvature, it is called a surface of constant curvature. [52] The unit sphere in E 3 has constant Gaussian curvature +1. The Euclidean plane and the cylinder both have constant Gaussian curvature 0. A unit pseudosphere has constant Gaussian curvature -1 (apart from its equator, that is singular).

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Formally, Gaussian curvature only depends on the Riemannian metric of the surface. This is Gauss's celebrated Theorema Egregium, which he found while concerned with geographic surveys and mapmaking. An intrinsic definition of the Gaussian curvature at a point P is the following: imagine an ant which is tied to P with a short thread of length r.

  5. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  6. Constant-mean-curvature surface - Wikipedia

    en.wikipedia.org/.../Constant-mean-curvature_surface

    In differential geometry, constant-mean-curvature (CMC) surfaces are surfaces with constant mean curvature. [1] [2] This includes minimal surfaces as a subset, but typically they are treated as special case. Note that these surfaces are generally different from constant Gaussian curvature surfaces, with the important exception of the sphere.

  7. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry, proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces. The theorem says that Gaussian curvature can be determined entirely by measuring angles, distances and their rates on a surface, without reference to the ...

  8. Sine-Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Sine-Gordon_equation

    This is the original form of the sine-Gordon equation, as it was considered in the 19th century in the course of investigation of surfaces of constant Gaussian curvature K = −1, also called pseudospherical surfaces. Consider an arbitrary pseudospherical surface. Across every point on the surface there are two asymptotic curves.

  9. Constant curvature - Wikipedia

    en.wikipedia.org/wiki/Constant_curvature

    In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold ) and is a single number determining its local geometry. [ 1 ]