Search results
Results From The WOW.Com Content Network
Given a flux according to the electromagnetism definition, the corresponding flux density, if that term is used, refers to its derivative along the surface that was integrated. By the Fundamental theorem of calculus , the corresponding flux density is a flux according to the transport definition.
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
The flux method is a crystal growth method where starting materials are dissolved in a solvent (flux), and are precipitated out to form crystals of a desired compound. The flux lowers the melting point of the desired compound, analogous to a wet chemistry recrystallization . [ 1 ]
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
The magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = B ⋅ S.Both B and S can be arbitrary, meaning that the flux Φ can be as well but increments of flux can be quantized.
Furthermore, in a thought experiment with a coil of turns, where each turn forms a loop with exactly the same boundary, each turn will "link" the "same" (identically, not merely the same quantity) flux, all for a total flux linkage of =. The distinction relies heavily on intuition, and the term "flux linkage" is used mainly in engineering ...