Search results
Results From The WOW.Com Content Network
The non-linearity of the Gross–Pitaevskii equation has its origin in the interaction between the particles: setting the coupling constant of interaction in the Gross–Pitaevskii equation to zero (see the following section) recovers the single-particle Schrödinger equation describing a particle inside a trapping potential.
It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ. When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = .
If nothing is specified, the equation is rendered in the same display style as "block", but without using a new paragraph. If the equation does appear on a line by itself, it is not automatically indented. The sum = converges to 2. The next line-width is disturbed by large operators. Or: The sum
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.
The average speed is 7.7 km/s, the net delta-v to reach this orbit is 8.1 km/s (the actual delta-v is typically 1.5–2.0 km/s more for atmospheric drag and gravity drag). The increase per meter would be 4.4 J/kg; this rate corresponds to one half of the local gravity of 8.8 m/s 2. For an altitude of 100 km (radius is 6471 km):