When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.

  3. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    is called a biquadratic function; equating it to zero defines a biquadratic equation, which is easy to solve as follows Let the auxiliary variable z = x 2. Then Q(x) becomes a quadratic q in z: q(z) = a 4 z 2 + a 2 z + a 0. Let z + and z − be the roots of q(z). Then the roots of the quartic Q(x) are

  4. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This case can also always be reduced to a biquadratic equation. Single Multiplicity-2 (SM2): when the general quartic equation can be expressed as () () =, where , , and are three different real numbers or is a real number and and are a couple of non-real complex conjugate numbers. This case is divided into two subcases, those that can be ...

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    A matrix polynomial equation is an equality between two matrix polynomials, which holds for the specific matrices in question. A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R).

  6. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity. For instance, it has been observed [ 2 ] that for a root x ℓ + 1 = x ℓ + 2 = ⋯ = x ℓ + d {\displaystyle x_{\ell +1}=x_{\ell +2}=\dots =x_{\ell +d}} with ...

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  8. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    As R is a homogeneous polynomial in two indeterminates, the fundamental theorem of algebra implies that R is a product of pq linear polynomials. If one defines the multiplicity of a common zero of P and Q as the number of occurrences of the corresponding factor in the product, Bézout's theorem is thus proved.