When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    Every data mining task has the problem of parameters. Every parameter influences the algorithm in specific ways. For DBSCAN, the parameters ε and minPts are needed. The parameters must be specified by the user. Ideally, the value of ε is given by the problem to solve (e.g. a physical distance), and minPts is then the desired minimum cluster ...

  3. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Like DBSCAN, OPTICS requires two parameters: ε, which describes the maximum distance (radius) to consider, and MinPts, describing the number of points required to form a cluster. A point p is a core point if at least MinPts points are found within its ε -neighborhood N ε ( p ) {\displaystyle N_{\varepsilon }(p)} (including point p itself).

  4. SUBCLU - Wikipedia

    en.wikipedia.org/wiki/SUBCLU

    SUBCLU is an algorithm for clustering high-dimensional data by Karin Kailing, Hans-Peter Kriegel and Peer Kröger. [1] It is a subspace clustering algorithm that builds on the density-based clustering algorithm DBSCAN.

  5. ELKI - Wikipedia

    en.wikipedia.org/wiki/ELKI

    When developing new algorithms or index structures, the existing components can be easily reused, and the type safety of Java detects many programming errors at compile time. ELKI is a free tool for analyzing data, mainly focusing on finding patterns and unusual data points without needing labels.

  6. List of Java bytecode instructions - Wikipedia

    en.wikipedia.org/wiki/List_of_Java_bytecode...

    This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. [1] The Java bytecode is generated from languages running on the Java Platform, most notably the Java programming language.

  7. Talk:DBSCAN - Wikipedia

    en.wikipedia.org/wiki/Talk:DBSCAN

    GPL-V3 Java implementations of more than 80 data mining algorithms. It offers an efficient Java implementation of the DBScan algorithm using a KD-Tree that is easy to integrate in other Java software. A GUI and command line interface is provided. This is advertisement text.

  8. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  9. Java bytecode - Wikipedia

    en.wikipedia.org/wiki/Java_bytecode

    Java bytecode is used at runtime either interpreted by a JVM or compiled to machine code via just-in-time (JIT) compilation and run as a native application. As Java bytecode is designed for a cross-platform compatibility and security, a Java bytecode application tends to run consistently across various hardware and software configurations. [3]