When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.

  3. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ^; the charges repel each other. If the charges have opposite signs then the product q 1 q 2 {\displaystyle q_{1}q_{2}} is negative and the direction of the force on q 1 {\displaystyle q_{1}} is − r ^ 12 {\textstyle ...

  4. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface. [4]: ch.12 [5]

  5. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  6. Contact force - Wikipedia

    en.wikipedia.org/wiki/Contact_force

    The microscopic origin of contact forces is diverse. Normal force is directly a result of Pauli exclusion principle and not a true force per se: Everyday objects do not actually touch each other; rather, contact forces are the result of the interactions of the electrons at or near the surfaces of the objects. [1]

  7. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    The net force upon the object according to observers in the rotating frame is F B = ma B. If their observations are to result in the correct force on the object when using Newton's laws, they must consider that the additional force F fict is present, so the end result is F B = F A + F fict. Thus, the fictitious force used by observers in B to ...

  8. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  9. Abraham–Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Abraham–Lorentz_force

    The Lorentz self-force derived for non-relativistic velocity approximation , is given in SI units by: = ˙ = ˙ = ˙ or in Gaussian units by = ˙. where is the force, ˙ is the derivative of acceleration, or the third derivative of displacement, also called jerk, μ 0 is the magnetic constant, ε 0 is the electric constant, c is the speed of light in free space, and q is the electric charge of ...