When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    Just as the magnitude of a plane angle in radians at the vertex of a circular sector is the ratio of the length of its arc to its radius, the magnitude of a solid angle in steradians is the ratio of the area covered on a sphere by an object to the square of the radius of the sphere. The formula for the magnitude of the solid angle in steradians is

  3. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the ...

  5. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  6. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The magnitude of u computed this way is ‖ u ‖ = 2 sin θ, where θ is the angle of rotation. This does not work if R is symmetric. Above, if R − R T is zero, then all subsequent steps are invalid. In this case, it is necessary to diagonalize R and find the eigenvector corresponding to an eigenvalue of 1.

  8. Binary angular measurement - Wikipedia

    en.wikipedia.org/wiki/Binary_angular_measurement

    Multiplying that fraction by 360° or 2π gives the angle in degrees in the range 0 to 360, or in radians, in the range 0 to 2π, respectively. For example, with n = 8, the binary integers (00000000) 2 (fraction 0.00), (01000000) 2 (0.25), (10000000) 2 (0.50), and (11000000) 2 (0.75) represent the angular measures 0°, 90°, 180°, and 270 ...

  9. Square degree - Wikipedia

    en.wikipedia.org/wiki/Square_degree

    The full moon covers only about 0.2 deg 2 of the sky when viewed from the surface of the Earth. The Moon is only a half degree across (i.e. a circular diameter of roughly 0.5°), so the moon's disk covers a circular area of: π (⁠ 0.5° / 2 ⁠) 2, or 0.2 square degrees.