When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix For example, using the convention below, the matrix

  3. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    For example: = ⁡ ⁡ = ⁡ ⁡ = ⁡ ⁡ ... The 3-sphere can be stereographically projected onto the whole Euclidean 3D-space, ... is a rotation matrix in E 4, ...

  4. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :

  5. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    If a rotation of Minkowski space is in a space-like plane, then this rotation is the same as a spatial rotation in Euclidean space. By contrast, a rotation in a plane spanned by a space-like dimension and a time-like dimension is a hyperbolic rotation , and if this plane contains the time axis of the reference frame, is called a "Lorentz boost".

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The number of Euler angles needed to represent the group SO(n) is n(n − 1)/2, equal to the number of planes containing two distinct coordinate axes in n-dimensional Euclidean space. In SO(4) a rotation matrix is defined by two unit quaternions, and therefore has six degrees of freedom, three from each quaternion.

  8. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  9. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...