Search results
Results From The WOW.Com Content Network
Almost 70% of the blood in the body is in the veins, and almost 75% of this blood is in the small veins and venules. [7] All of the systemic veins are tributaries of the largest veins, the superior and inferior vena cava, which empty the oxygen-depleted blood into the right atrium of the heart. [8]
Though veins might make it appear as such, human blood is never naturally blue. [3] The blue appearance of surface veins is caused mostly by the scattering of blue light away from the outside of venous tissue if the vein is at 0.5 mm deep or more. Veins and arteries appear similar when skin is removed and are seen directly. [4] [5]
The plasma contains 91.5% water, 7% proteins and 1.5% other solutes. The formed elements are platelets, white blood cells, and red blood cells. The presence of these formed elements and their interaction with plasma molecules are the main reasons why blood differs so much from ideal Newtonian fluids. [1]
An average adult contains five to six quarts (roughly 4.7 to 5.7 liters) of blood, accounting for approximately 7% of their total body weight. [9] Blood consists of plasma, red blood cells, white blood cells, and platelets. The digestive system also works with the circulatory system to provide the nutrients the system needs to keep the heart ...
Oxygen-poor blood enters the right side of the heart through two large veins. Oxygen-rich blood from the lungs enters through the pulmonary veins on the left side of the heart into the aorta and then reaches the rest of the body. The capillaries are responsible for allowing the blood to receive oxygen through tiny air sacs in the lungs.
However, one exception includes pulmonary arteries, which contain the most deoxygenated blood in the body, while the pulmonary veins contain oxygenated blood. Additional return flow may be generated by the movement of skeletal muscles, which can compress veins and push blood through the valves in veins toward the right atrium.
The converse argument is that generally artery walls are thicker and more muscular than veins as the blood passing through is of a higher pressure. This means that it would take longer for any oxygen to diffuse through to the cells in the tunica adventitia and the tunica media, causing them to need a more extensive vasa vasorum.
Vasodilation plays a major role in immune system function. Wider blood vessels allow more blood containing immune cells and proteins to reach the infection site. Vasodilation occurs as part of the process of inflammation, which is caused by several factors including presence of a pathogen, injury to tissues or blood vessels, and immune ...