Search results
Results From The WOW.Com Content Network
These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (10 0 –10 −3 Torr) or high (10 −3 –10 −6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.
Nitrogen dioxide is poisonous and can be fatal if inhaled in large quantities. [8] Cooking with a gas stove produces nitrogen dioxide which causes poorer indoor air quality. Combustion of gas can lead to increased concentrations of nitrogen dioxide throughout the home environment which is linked to respiratory issues and diseases.
In vacuum applications, a cold trap is a device that condenses all vapors except the permanent gases (hydrogen, oxygen, and nitrogen) into a liquid or solid. [ 2 ] [ needs update ] The most common objective is to prevent vapors being evacuated from an experiment from entering a vacuum pump where they would condense and contaminate it.
Nitrogen dioxide poisoning is the illness resulting from the toxic effect of nitrogen dioxide (NO 2). It usually occurs after the inhalation of the gas beyond the threshold limit value. [1] Nitrogen dioxide is reddish-brown with a very harsh smell at high concentrations, at lower concentrations it is colorless but may still have a harsh odour.
For instance, to safely fill a new container or a pressure vessel with flammable gases, the atmosphere of normal air (containing 20.9 volume percent of oxygen) in the vessel would first be flushed (purged) with nitrogen or another non-flammable inert gas, thereby reducing the oxygen concentration inside the container. When the oxygen ...
Composition of normal air vs. hypoxic air. Hypoxic air technology for fire prevention, also known as oxygen reduction system (ORS), is an active fire protection technique based on a permanent reduction of the oxygen concentration in the protected rooms.
The most common purge gases commercially available in large quantities are nitrogen and carbon dioxide. Other inert gases, e.g. argon or helium may be used. Nitrogen and carbon dioxide are unsuitable purge gases in some applications, as these gases may undergo chemical reaction with fine dusts of certain light metals.
The term inert gas is context-dependent because several of the inert gases, including nitrogen and carbon dioxide, can be made to react under certain conditions. [ 1 ] [ 2 ] Purified argon gas is the most commonly used inert gas due to its high natural abundance (78.3% N 2 , 1% Ar in air) [ 3 ] and low relative cost.