Search results
Results From The WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
The net electric current I is the surface integral of the electric current density J passing through Σ: =, where dS denotes the differential vector element of surface area S, normal to surface Σ. (Vector area is sometimes denoted by A rather than S , but this conflicts with the notation for magnetic vector potential ).
Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge. The law was first [ 1 ] formulated by Joseph-Louis Lagrange in 1773, [ 2 ] followed by Carl Friedrich Gauss in 1835, [ 3 ] both in the context of the attraction ...
The term on the right is the divergence of the current density J at the same point. The equation equates these two factors, which says that the only way for the charge density at a point to change is for a current of charge to flow into or out of the point. This statement is equivalent to a conservation of four-current.
Current is the movement of charge. The continuity equation says that if charge is moving out of a differential volume (i.e., divergence of current density is positive) then the amount of charge within that volume is going to decrease, so the rate of change of charge density is negative.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
The Poynting vector appears in Poynting's theorem (see that article for the derivation), an energy-conservation law: =, where J f is the current density of free charges and u is the electromagnetic energy density for linear, nondispersive materials, given by = (+), where
where this time is the charge density, is the current density vector, and is the current source-sink term. The current source and current sinks are where the current density emerges σ > 0 {\displaystyle \sigma >0} or vanishes σ < 0 {\displaystyle \sigma <0} , respectively (for example, the source and sink can represent the two poles of an ...