Search results
Results From The WOW.Com Content Network
Downstream processing and analytical bioseparation both refer to the separation or purification of biological products, but at different scales of operation and for different purposes. Downstream processing implies manufacture of a purified product fit for a specific use, generally in marketable quantities, while analytical bioseparation refers ...
Protein precipitation is widely used in downstream processing of biological products in order to concentrate proteins and purify them from various contaminants. For example, in the biotechnology industry protein precipitation is used to eliminate contaminants commonly contained in blood. [1]
The downstream part of a bioprocess refers to the part where the cell mass from the upstream are processed to meet purity and quality requirements. Downstream processing is usually divided into three main sections: cell disruption, a purification section and a polishing section.
The protein manufacturing cost remains high and there is a growing demand to develop cost efficient and rapid protein purification methods. Understanding the different protein purification methods and optimizing the downstream processing is critical to minimize production costs while maintaining the quality of acceptable standards of homogeneity. [2]
The purified DNA can then be used for downstream applications such as PCR, [2] sequencing, or cloning. Currently, it is a routine procedure in molecular biology or forensic analyses. This process can be done in several ways, depending on the type of the sample and the downstream application, [ 3 ] the most common methods are: mechanical ...
The biosolids can be collected for further processing, or dried and used as fertilizer. An extremely simple version of a sewage bioreactor is a septic tank whereby the sewage is left in situ, with or without additional media to house bacteria. In this instance, the biosludge itself is the primary host for the bacteria. [citation needed]
Production of antibiotics is a naturally occurring event, that thanks to advances in science can now be replicated and improved upon in laboratory settings. Due to the discovery of penicillin by Alexander Fleming, and the efforts of Florey and Chain in 1938, large-scale, pharmaceutical production of antibiotics has been made possible.
This page was last edited on 11 December 2024, at 08:10 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.