When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]

  3. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    By this definition, ε equals the value of the unit in the last place relative to 1, i.e. () (where b is the base of the floating point system and p is the precision) and the unit roundoff is u = ε / 2, assuming round-to-nearest mode, and u = ε, assuming round-by-chop.

  4. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  5. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    An F-score is a combination of the precision and the recall, providing a single score. There is a one-parameter family of statistics, with parameter β, which determines the relative weights of precision and recall. The traditional or balanced F-score is the harmonic mean of precision and recall:

  6. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  7. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties.

  8. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    In information retrieval, the positive predictive value is called precision, and sensitivity is called recall. Unlike the Specificity vs Sensitivity tradeoff, these measures are both independent of the number of true negatives, which is generally unknown and much larger than the actual numbers of relevant and retrieved documents.

  9. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    Precision takes all retrieved documents into account. It can also be evaluated considering only the topmost results returned by the system using Precision@k. Note that the meaning and usage of "precision" in the field of information retrieval differs from the definition of accuracy and precision within other branches of science and statistics.