Search results
Results From The WOW.Com Content Network
Although the resulting Fibonacci sequence dates back long before Leonardo, [9] its inclusion in his book is why the sequence is named after him today. The fourth section derives approximations, both numerical and geometrical, of irrational numbers such as square roots. [10] The book also includes proofs in Euclidean geometry. [11]
Fibonacci numbers are used in a polyphase version of the merge sort algorithm in which an unsorted list is divided into two lists whose lengths correspond to sequential Fibonacci numbers—by dividing the list so that the two parts have lengths in the approximate proportion φ.
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774. [1] [2]
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...
F, also called the Fibonacci factorial, where n is a nonnegative integer, is defined as the product of the first n positive Fibonacci numbers, i.e. !:= =,, where F i is the i th Fibonacci number, and 0! F gives the empty product (defined as the multiplicative identity, i.e. 1).