Search results
Results From The WOW.Com Content Network
The Maxwell–Boltzmann distribution is a result of the kinetic theory of gases, which provides a simplified explanation of many fundamental gaseous properties, including pressure and diffusion. [3] The Maxwell–Boltzmann distribution applies fundamentally to particle velocities in three dimensions, but turns out to depend only on the speed ...
Maxwell–Boltzmann statistics is used to derive the Maxwell–Boltzmann distribution of an ideal gas. However, it can also be used to extend that distribution to particles with a different energy–momentum relation , such as relativistic particles (resulting in Maxwell–Jüttner distribution ), and to other than three-dimensional spaces.
As an example: the partition function for the isothermal-isobaric ensemble, the generalized Boltzmann distribution, divides up probabilities based on particle number, pressure, and temperature. The energy is replaced by the characteristic potential of that ensemble, the Gibbs Free Energy .
By contrast, thermal fluctuations continually add energy to the particle and prevent it from reaching exactly 0 velocity. Rather, the initial ensemble of stochastic oscillators approaches a steady state in which the velocity and position are distributed according to the Maxwell–Boltzmann distribution.
The Boltzmann distribution itself is one of the most important tools in applying statistical mechanics to real systems, as it massively simplifies the study of systems that can be separated into independent parts (e.g., particles in a gas, electromagnetic modes in a cavity, molecular bonds in a polymer).
The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that ...
Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics we use the Thomas–Fermi approximation (gas in a box) and go to the limit of a very large trap, and express the degeneracy of the energy states as a differential, and summations over states as integrals.
The analogues of these equations in the canonical ensemble are the barometric formula and the Maxwell–Boltzmann distribution, respectively. In the limit , the microcanonical and canonical expressions coincide; however, they differ for finite . In particular, in the microcanonical ensemble, the positions and velocities are not statistically ...