When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for ...

  3. Algorithmic efficiency - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_efficiency

    In the theoretical analysis of algorithms, the normal practice is to estimate their complexity in the asymptotic sense. The most commonly used notation to describe resource consumption or "complexity" is Donald Knuth 's Big O notation , representing the complexity of an algorithm as a function of the size of the input n {\textstyle n} .

  4. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity of an algorithm is usually taken to be its worst-case complexity unless specified otherwise. Analyzing a particular algorithm falls under the field of analysis of algorithms . To show an upper bound T ( n ) {\displaystyle T(n)} on the time complexity of a problem, one needs to show only that there is a particular algorithm with ...

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  6. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations N as the result of input size n for each function. In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.

  7. BPP (complexity) - Wikipedia

    en.wikipedia.org/wiki/BPP_(complexity)

    Las Vegas algorithms with polynomial bound running times are used to define the class ZPP. Alternatively, ZPP contains probabilistic algorithms that are always correct and have expected polynomial running time. This is weaker than saying it is a polynomial time algorithm, since it may run for super-polynomial time, but with very low probability.

  8. Kolmogorov complexity - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_complexity

    Fix a universal Turing machine , the same one used to define the (prefix-free) Kolmogorov complexity. Define the (prefix-free) universal probability of a string to be = = In other words, it is the probability that, given a uniformly random binary stream as input, the universal Turing machine would halt after reading a certain prefix of the ...

  9. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    Since algorithms are platform-independent (i.e. a given algorithm can be implemented in an arbitrary programming language on an arbitrary computer running an arbitrary operating system), there are additional significant drawbacks to using an empirical approach to gauge the comparative performance of a given set of algorithms.