Search results
Results From The WOW.Com Content Network
Stress concentration can arise due to various factors. The following are the main causes of stress concentration: Material Defects: When designing mechanical components, it is generally presumed that the material used is consistent and homogeneous throughout. In practice, however, material inconsistencies such as internal cracks, blowholes ...
The general trend given by the Goodman relation is one of decreasing fatigue life with increasing mean stress for a given level of alternating stress. The relation can be plotted to determine the safe cyclic loading of a part; if the coordinate given by the mean stress and the alternating stress lies under the curve given by the relation, then ...
Stress is a measure of the average amount of force exerted per unit area. The stress distribution can be obtained from known theoretical [ 1 ] or numerical ( Finite element method ) analysis. The researcher who builds up the force lines can choose a magnitude of the internal force and the initial border where the drawing procedure starts.
After the stress distribution within the object has been determined with respect to a coordinate system (,), it may be necessary to calculate the components of the stress tensor at a particular material point with respect to a rotated coordinate system (′, ′), i.e., the stresses acting on a plane with a different orientation passing through ...
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
This would be considered a stress singularity, which is not possible in real-world applications. For this reason, in numerical studies in the field of fracture mechanics, it is often appropriate to represent cracks as round tipped notches, with a geometry dependent region of stress concentration replacing the crack-tip singularity. [9]
In continuum mechanics, stress triaxiality is the relative degree of hydrostatic stress in a given stress state. [1] It is often used as a triaxiality factor, T.F, which is the ratio of the hydrostatic stress, σ m {\displaystyle \sigma _{m}} , to the Von Mises equivalent stress , σ e q {\displaystyle \sigma _{eq}} .
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.