When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation. Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Least common multiple = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720 Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are ...

  4. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. [1] In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. [2]

  5. Anonymous recursion - Wikipedia

    en.wikipedia.org/wiki/Anonymous_recursion

    Anonymous recursion is primarily of use in allowing recursion for anonymous functions, particularly when they form closures or are used as callbacks, to avoid having to bind the name of the function. Anonymous recursion primarily consists of calling "the current function", which results in direct recursion .

  6. Recursive data type - Wikipedia

    en.wikipedia.org/wiki/Recursive_data_type

    This mutually recursive definition can be converted to a singly recursive definition by inlining the definition of a forest: t: v [t[1], ..., t[k]] A tree t consists of a pair of a value v and a list of trees (its children). This definition is more compact, but somewhat messier: a tree consists of a pair of one type and a list another, which ...

  7. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence 1 , 2 , 4 , 8 , 16 , … {\displaystyle 1,2,4,8,16,\ldots } , where each number is the sum of twice the previous number, and the square number sequence 0 , 1 , 4 ...

  8. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    For small values of m like 1, 2, or 3, the Ackermann function grows relatively slowly with respect to n (at most exponentially). For m ≥ 4 {\displaystyle m\geq 4} , however, it grows much more quickly; even A ( 4 , 2 ) {\displaystyle A(4,2)} is about 2.00353 × 10 19 728 , and the decimal expansion of A ( 4 , 3 ) {\displaystyle A(4,3)} is ...

  9. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    For LCS(R 2, C 1), A is compared with A. The two elements match, so A is appended to ε, giving (A). For LCS(R 2, C 2), A and G do not match, so the longest of LCS(R 1, C 2), which is (G), and LCS(R 2, C 1), which is (A), is used. In this case, they each contain one element, so this LCS is given two subsequences: (A) and (G).