Search results
Results From The WOW.Com Content Network
Anomaly detection finds application in many domains including cybersecurity, medicine, machine vision, statistics, neuroscience, law enforcement and financial fraud to name only a few. Anomalies were initially searched for clear rejection or omission from the data to aid statistical analysis, for example to compute the mean or standard deviation.
Adversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. [1] A survey from May 2020 revealed practitioners' common feeling for better protection of machine learning systems in industrial applications.
AI-assisted reverse engineering (AIARE) is a branch of computer science that leverages artificial intelligence (AI), notably machine learning (ML) strategies, to augment and automate the process of reverse engineering. The latter involves breaking down a product, system, or process to comprehend its structure, design, and functionality.
Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
Learning algorithm: Numerous trade-offs exist between learning algorithms. Almost any algorithm will work well with the correct hyperparameters [164] for training on a particular data set. However, selecting and tuning an algorithm for training on unseen data requires significant experimentation.
Adversarial machine learning has other uses besides generative modeling and can be applied to models other than neural networks. In control theory, adversarial learning based on neural networks was used in 2006 to train robust controllers in a game theoretic sense, by alternating the iterations between a minimizer policy, the controller, and a ...
Machine learning can be used to combat spam, scams, and phishing. It can scrutinize the contents of spam and phishing attacks to attempt to identify malicious elements. [15] Some models built via machine learning algorithms have over 90% accuracy in distinguishing between spam and legitimate emails. [16]