When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  4. Feuerbach hyperbola - Wikipedia

    en.wikipedia.org/wiki/Feuerbach_hyperbola

    Feuerbach Hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]

  5. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Visual proof that confocal ellipses and hyperbolas intersect orthogonally, because each has a "reflection property" Considering the pencils of confocal ellipses and hyperbolas (see lead diagram) one gets from the geometrical properties of the normal and tangent at a point (the normal of an ellipse and the tangent of a hyperbola bisect the angle ...

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The minor axis is the shortest diameter of an ellipse, and its half-length is the semi-minor axis (b), the same value b as in the standard equation below. By analogy, for a hyperbola the parameter b in the standard equation is also called the semi-minor axis. The following relations hold: [6] = =

  7. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.

  8. Vieta jumping - Wikipedia

    en.wikipedia.org/wiki/Vieta_jumping

    When q > 2, the equation x 2 + y 2 − qxy − q = 0 defines a hyperbola H and (a,b) represents an integral lattice point on H. If (x,x) is an integral lattice point on H with x > 0, then (since q is integral) one can see that x = 1. This proposition's statement is then true for the point (x,x).

  9. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.