Search results
Results From The WOW.Com Content Network
The Spectral Database for Organic Compounds (SDBS) is a free online searchable database hosted by the National Institute of Advanced Industrial Science and Technology (AIST) in Japan, that contains spectral data for ca 34,000 organic molecules. [1] The database is available in English and in Japanese and it includes six types of spectra: laser ...
Spectral Database for Organic Compounds National Institute of Advanced Industrial Science and Technology (AIST), Japan Organic compounds Spectra:IR Raman MASS ESR 1 H NMR 13 C NMR SDBS No curated "SDBS". 34,000 Serum Metabolome Database: The Metabolomics Innovation Centre: found in blood serum "Serum Metabolome DB". 4,651 Solvent Selection Tool
The Spectral Database for Organic Compounds (SDBS) is developed and maintained by Japan's National Institute of Advanced Industrial Science and Technology. SDBS includes 14700 1 H NMR spectra and 13000 13 C NMR spectra as well as FT-IR, Raman, ESR, and MS data. The data are stored and displayed as an image of the processed data.
A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.
Other NMR-active nuclei can also cause these satellites, but carbon is most common culprit in the proton NMR spectra of organic compounds. Sometimes other peaks can be seen around 1 H peaks, known as spinning sidebands and are related to the rate of spin of an NMR tube. These are experimental artifacts from the spectroscopic analysis itself ...
A sample 19F NMR spectrum of a simple organic compound. Integrations are shown under each peak. 19F NMR spectrum of 1-bromo-3,4,5-trifluorobenzene. The expansion shows the spin–spin coupling pattern arising from the para-fluorine coupling to the 2 meta-fluorine and 2 ortho proton nuclei.
Paramagnetism diminishes the resolution of an NMR spectrum to the extent that coupling is rarely resolved. Nonetheless spectra of paramagnetic compounds provide insight into the bonding and structure of the sample. For example, the broadening of signals is compensated in part by the wide chemical shift range (often 200 ppm in 1 H NMR).
The database contains also a smaller amount of NMR data from carbohydrates, cofactors and ligands. [1] These data are crossreferenced to 3D structures in the PDB when available. The NMR data are provided in the NMR-STAR file format and a number of format conversion tools are available at the site to convert files from NMR-STAR to other formats. [1]