Search results
Results From The WOW.Com Content Network
Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.
The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in the sense of precomposition, above. The fibers then travel along with the points in the base space at which they are anchored: the ...
This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on N {\displaystyle N} may be pulled back to M {\displaystyle M} using ϕ {\displaystyle \phi } .
In mathematics, a pullback bundle or induced bundle [1] [2] [3] is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f * E over B′. The fiber of f * E over a point b′ in B′ is just the fiber of E over f(b′).
Chiastic structure, or chiastic pattern, is a literary technique in narrative motifs and other textual passages. An example of chiastic structure would be two ideas, A and B, together with variants A' and B', being presented as A,B,B',A'. Chiastic structures that involve more components are sometimes called "ring structures" or "ring compositions".
For example, if X, Y are manifolds, R the field of real numbers, and the cohomology is de Rham cohomology, then the pullback is induced by the pullback of differential forms. The homotopy invariance of cohomology states that if two maps f, g: X → Y are homotopic to each other, then they determine the same pullback: f * = g *.
Also apophthegm. A terse, pithy saying, akin to a proverb, maxim, or aphorism. aposiopesis A rhetorical device in which speech is broken off abruptly and the sentence is left unfinished. apostrophe A figure of speech in which a speaker breaks off from addressing the audience (e.g., in a play) and directs speech to a third party such as an opposing litigant or some other individual, sometimes ...
Because we can similarly interpret the diagram above as the commutative diagram, from properties of categories, we get a commutative diagram. giving a homotopy colimit. We could guess this looks like. but notice we have introduced a new cycle to fill in the new data of the composition.