When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Beta particle - Wikipedia

    en.wikipedia.org/wiki/Beta_particle

    A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.

  3. Common beta emitters - Wikipedia

    en.wikipedia.org/wiki/Common_beta_emitters

    Tritium is a low-energy beta emitter commonly used as a radiotracer in research and in traser [check spelling] self-powered lightings. The half-life of tritium is 12.3 years. The electrons from beta emission from tritium are so low in energy (average decay energy 5.7 keV) that a Geiger counter cannot be used to detect them. An advantage of the ...

  4. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Beta radiation from linac accelerators is far more energetic and penetrating than natural beta radiation. It is sometimes used therapeutically in radiotherapy to treat superficial tumors. Beta-plus (β +) radiation is the emission of positrons, which are the antimatter form of electrons. When a positron slows to speeds similar to those of ...

  5. Radioactive tracer - Wikipedia

    en.wikipedia.org/wiki/Radioactive_tracer

    It decays by beta-decay with a half-life of 87.51 days. It is used to label the sulfur-containing amino-acids methionine and cysteine . When a sulfur atom replaces an oxygen atom in a phosphate group on a nucleotide a thiophosphate is produced, so 35 S can also be used to trace a phosphate group.

  6. Relative biological effectiveness - Wikipedia

    en.wikipedia.org/wiki/Relative_biological...

    Early on it was found that X-rays, gamma rays, and beta radiation were essentially equivalent for all cell types. Therefore, the standard radiation type X is generally an X-ray beam with 250 keV photons or cobalt-60 gamma rays. As a result, the relative biological effectiveness of beta and photon radiation is essentially 1.

  7. Radiochemistry - Wikipedia

    en.wikipedia.org/wiki/Radiochemistry

    Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).

  8. Radioanalytical chemistry - Wikipedia

    en.wikipedia.org/wiki/Radioanalytical_chemistry

    The field of radioanalytical chemistry was originally developed by Marie Curie with contributions by Ernest Rutherford and Frederick Soddy. They developed chemical separation and radiation measurement techniques on terrestrial radioactive substances. During the twenty years that followed 1897 the concepts of radionuclides was born. [1]

  9. Radionuclide - Wikipedia

    en.wikipedia.org/wiki/Radionuclide

    In food preservation, radiation is used to stop the sprouting of root crops after harvesting, to kill parasites and pests, and to control the ripening of stored fruit and vegetables. Food irradiation usually uses beta-decaying nuclides with strong gamma emissions like cobalt-60 or caesium-137.