When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]

  5. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The simple formula for the factorial, x! = 1 × 2 × ⋯ × x is only valid when x is a positive integer, and no elementary function has this property, but a good solution is the gamma function () = (+). [1]

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    for all x > 1. Suppose now that ζ(1 + iy) = 0. Certainly y is not zero, since ζ(s) has a simple pole at s = 1. Suppose that x > 1 and let x tend to 1 from above. Since () has a simple pole at s = 1 and ζ(x + 2iy) stays analytic, the left hand side in the previous inequality tends to 0, a contradiction.

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    A probability distribution is not uniquely determined by the moments E[X n] = e nμ + ⁠ 1 / 2 ⁠ n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]

  9. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    All instances of log(x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln(x) or log e (x Existence of a prime number between any number and its double In number theory , Bertrand's postulate is the theorem that for any integer n > 3 {\displaystyle n>3} , there exists at least one prime number p ...