Search results
Results From The WOW.Com Content Network
Open problems around exact algorithms by Gerhard J. Woeginger, Discrete Applied Mathematics 156 (2008) 397–405. The RTA list of open problems – open problems in rewriting. The TLCA List of Open Problems – open problems in area typed lambda calculus
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [5] the zeroes of a function; whether the indefinite integral of a function is also in the class. [6] Of course, some subclasses of these problems are decidable.
A fair solution must guarantee that each philosopher will eventually eat, no matter how slowly that philosopher moves relative to the others. The following source code is a C++11 implementation of the resource hierarchy solution for five philosophers. The sleep_for() function simulates the time normally spent with business logic. [6]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The question then is, whether there exists an algorithm that maps instances to solutions. For example, in the factoring problem, the instances are the integers n, and solutions are prime numbers p that are the nontrivial prime factors of n. An example of a computational problem without a solution is the Halting problem. Computational problems ...
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.