Search results
Results From The WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
[[Category:Unit comparison table templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Unit comparison table templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
The Template:Precision determines the precision (as a count of decimal digits) for any amount, large or negative, using a fast algorithm. It can also handle a trailing decimal point (such as "15." or "-41.") or trailing zeroes (such as "15.34000" having precision as 5 decimal digits).
4 bits – (a.k.a. tetrad(e), nibble, quadbit, semioctet, or halfbyte) the size of a hexadecimal digit; decimal digits in binary-coded decimal form 5 bits – the size of code points in the Baudot code, used in telex communication (a.k.a. pentad) 6 bits – the size of code points in Univac Fieldata, in IBM "BCD" format, and in Braille. Enough ...
A scale factor of 1 ⁄ 10 cannot be used here, because scaling 160 by 1 ⁄ 10 gives 16, which is greater than the greatest value that can be stored in this fixed-point format. However, 1 ⁄ 11 will work as a scale factor, because the maximum scaled value, 160 ⁄ 11 = 14. 54, fits within this range. Given this set:
Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required. It should not be confused with the symbolic computation provided by many computer algebra systems , which represent numbers by expressions such as π ·sin(2) , and can thus represent ...
This gives from 6 to 9 significant decimal digits precision. If a decimal string with at most 6 significant digits is converted to the IEEE 754 single-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 single ...