When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).

  3. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex. For a parabola, the semi-latus rectum, , is ...

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    where e is the eccentricity and l is the semi-latus rectum. As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]

  6. Menaechmus - Wikipedia

    en.wikipedia.org/wiki/Menaechmus

    Menaechmus likely discovered the conic sections, that is, the ellipse, the parabola, and the hyperbola, as a by-product of his search for the solution to the Delian problem. [3] Menaechmus knew that in a parabola y 2 = L x, where L is a constant called the latus rectum , although he was not aware of the fact that any equation in two unknowns ...

  7. Universal parabolic constant - Wikipedia

    en.wikipedia.org/wiki/Universal_parabolic_constant

    The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter. The focal parameter is twice the focal length. The ratio is ...

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge. The semi-minor axis b is related to the semi-major axis a through the eccentricity e and the semi-latus rectum, as follows:

  9. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: = ⁡ where e is the eccentricity and is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve).