Search results
Results From The WOW.Com Content Network
The percentage of water vapor in surface air varies from 0.01% at -42 °C (-44 °F) [15] to 4.24% when the dew point is 30 °C (86 °F). [16] Over 99% of atmospheric water is in the form of vapour, rather than liquid water or ice, [17] and approximately 99.13% of the water vapour is contained in the troposphere.
Water moves perpetually through each of these regions in the water cycle consisting of the following transfer processes: evaporation from oceans and other water bodies into the air and transpiration from land plants and animals into the air. precipitation, from water vapor condensing from the air and falling to the earth or ocean.
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
Atmospheric circulation is the large-scale movement of air through the troposphere, and the means (with ocean circulation) by which heat is distributed around Earth. The large-scale structure of the atmospheric circulation varies from year to year, but the basic structure remains fairly constant because it is determined by Earth's rotation rate ...
Artificial plasma produced in air by a Jacob's Ladder. The extremely strong potential difference between the two rods ionize particles in the air, creating a plasma. A gas is usually converted to a plasma in one of two ways, either from a huge voltage difference between two points, or by exposing it to extremely high temperatures.
If the air contains water vapor, then cooling of the air can cause the water to condense, and the air no longer functions as an ideal gas. If the air is at the saturation vapor pressure , then the rate at which temperature decreases with altitude is called the saturated adiabatic lapse rate .
The vadose zone does not include the area that is still saturated above the water table, often referred to as the capillary fringe. [1] Movement of water within the vadose zone is studied within soil physics and hydrology, particularly hydrogeology, and is of importance to agriculture, contaminant transport, and flood control.
Most water in Earth's atmosphere and crust comes from saline seawater, while fresh water accounts for nearly 1% of the total. The vast bulk of the water on Earth is saline or salt water, with an average salinity of 35‰ (or 3.5%, roughly equivalent to 34 grams of salts in 1 kg of seawater), though this varies slightly according to the amount of runoff received from surrounding land.