Search results
Results From The WOW.Com Content Network
Endoscopic optical coherence tomography, also intravascular optical coherence tomography is a catheter-based imaging application of optical coherence tomography (OCT). [1] It is capable of acquiring high-resolution images from inside a blood vessel using optical fibers and laser technology .
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
Endomicroscopy is a technique for obtaining histology-like images from inside the human body in real-time, [1] [2] [3] a process known as ‘optical biopsy’. [4] [5] It generally refers to fluorescence confocal microscopy, although multi-photon microscopy and optical coherence tomography have also been adapted for endoscopic use.
Endoscopic ultrasound (EUS) or echo-endoscopy is a medical procedure in which endoscopy (insertion of a probe into a hollow organ) is combined with ultrasound to obtain images of the internal organs in the chest, abdomen and colon. It can be used to visualize the walls of these organs, or to look at adjacent structures.
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.
Sound (or lattice vibration) can be described by a phonon just as light can be considered as photons, and therefore one can state that SASER is the acoustic analogue of the laser. [citation needed] In a SASER device, a source (e.g., an electric field as a pump) produces sound waves (lattice vibrations, phonons) that travel through an active medium.
Angle-resolved low-coherence interferometry (a/LCI) is an emerging [when?] biomedical imaging technology which uses the properties of scattered light to measure the average size of cell structures, including cell nuclei. The technology shows promise as a clinical tool for in situ detection of dysplastic, or precancerous tissue.
Phase-sensitive coherent optical time-domain reflectometry (Φ-OTDR) is a technique that can provide sufficient sensitivity and resolution for these distributed acoustic sensing systems. [2] Standard optical time-domain reflectometry techniques use light sources with coherence lengths, which are shorter than pulse lengths. This can yield a sum ...