Search results
Results From The WOW.Com Content Network
Single scattering: when an electron is scattered just once. Plural scattering: when electron(s) scatter several times. Multiple scattering: when electron(s) scatter many times over. The likelihood of an electron scattering and the degree of the scattering is a function of the specimen thickness and the mean free path. [6]
Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram An electron emits and reabsorbs a photon Box diagram The box diagram for kaon oscillations
The probability of scattering in such a system is defined as the number of electrons scattered, per unit electron current, per unit path length, per unit pressure at 0 °C, per unit solid angle. The number of collisions equals the total number of electrons scattered elastically and inelastically in all angles, and the probability of collision ...
Møller scattering is the name given to electron-electron scattering in quantum field theory, named after the Danish physicist Christian Møller.The electron interaction that is idealized in Møller scattering forms the theoretical basis of many familiar phenomena such as the repulsion of electrons in the helium atom.
In many areas of science, Bragg's law, Wulff–Bragg's condition, or Laue–Bragg interference are a special case of Laue diffraction, giving the angles for coherent scattering of waves from a large crystal lattice. It describes how the superposition of wave fronts scattered by lattice planes leads to a strict relation between the wavelength ...
However, Klein's result showed that if the potential is at least of the order of the electron mass (where V is the electric potential, e is the elementary charge, m is the electron mass and c is the speed of light), the barrier is nearly transparent. Moreover, as the potential approaches infinity, the reflection diminishes and the electron is ...
is the electron-defect scattering length, and λ b o u n d a r y {\displaystyle \lambda _{\mathrm {boundary} }} is the electron scattering length with the boundary. In terms of scattering mechanisms, optical phonon emission normally dominates, depending on the material and transport conditions.
Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.