Search results
Results From The WOW.Com Content Network
The C language provides the four basic arithmetic type specifiers char, int, float and double (as well as the boolean type bool), and the modifiers signed, unsigned, short, and long. The following table lists the permissible combinations in specifying a large set of storage size-specific declarations.
For Integers, the unsigned modifier defines the type to be unsigned. The default integer signedness outside bit-fields is signed, but can be set explicitly with signed modifier. By contrast, the C standard declares signed char, unsigned char, and char, to be three distinct types, but specifies that all three must have the same size and alignment.
C also provides a special type of member known as a bit field, which is an integer with an explicitly specified number of bits. A bit field is declared as a structure (or union) member of type int, signed int, unsigned int, or _Bool, [note 4] following the member name by a colon (:) and the number of bits it should occupy. The total number of ...
The set of basic C data types is similar to Java's. Minimally, there are four types, char, int, float, and double, but the qualifiers short, long, signed, and unsigned mean that C contains numerous target-dependent integer and floating-point primitive types. [15]
This type is not supported by compilers that require C code to be compliant with the previous C++ standard, C++03, because the long long type did not exist in C++03. For an ANSI/ISO compliant compiler, the minimum requirements for the specified ranges, that is, −(2 63 −1) [ 11 ] to 2 63 −1 for signed and 0 to 2 64 −1 for unsigned, [ 12 ...
Addition of a pair of two's-complement integers is the same as addition of a pair of unsigned numbers (except for detection of overflow, if that is done); the same is true for subtraction and even for N lowest significant bits of a product (value of multiplication). For instance, a two's-complement addition of 127 and −128 gives the same ...
^c The ALGOL 68, C and C++ languages do not specify the exact width of the integer types short, int, long, and (C99, C++11) long long, so they are implementation-dependent. In C and C++ short , long , and long long types are required to be at least 16, 32, and 64 bits wide, respectively, but can be more.
C's usual arithmetic conversions allow for efficient code to be generated, but can sometimes produce unexpected results. For example, a comparison of signed and unsigned integers of equal width requires a conversion of the signed value to unsigned. This can generate unexpected results if the signed value is negative.