Search results
Results From The WOW.Com Content Network
Astrocytes (green) in the context of neurons (red) in a mouse cortex cell culture 23-week-old fetal brain culture human astrocyte Astrocytes (red-yellow) among neurons (green) in the living cerebral cortex. Astrocytes are a sub-type of glial cells in the central nervous system. They are also known as astrocytic glial cells.
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...
The Ca 2+ signal from the astrocyte may also participate in controlling blood flow in the brain. [ 3 ] Gliotransmitters have been shown to control synapse development and regulate synaptic function, and their release can lead to paracrine actions on astrocytes as well as the regulation of neurotransmission. [ 1 ]
The astrocytes of the glia limitans are responsible for separating the brain into two primary compartments. The first compartment is the immune-privileged brain and spinal cord parenchyma. This compartment contains multiple immunosuppressive cell surface proteins such as CD200 and CD95L and it allows for the release of anti-inflammatory factors.
Since Bergmann glia appear to persist in the cerebellum, and perform many of the roles characteristic of astrocytes, they have also been called "specialized astrocytes." [9] Bergmann glia have multiple radial processes that extend across the molecular layer of the cerebellar cortex and terminate at the pial surface as a bulbous endfoot. [11]
Embryonic vertebrate subdivisions of the developing human brain hindbrain or rhombencephalon is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla , pons , and cerebellum .
GFAP+1 is an antibody which labels two isoforms. Although GFAP+1 positive astrocytes are supposedly not reactive astrocytes, they have a wide variety of morphologies including processes of up to 0.95 mm (seen in the human brain). The expression of GFAP+1 positive astrocytes is linked with old age and the onset of AD pathology. [47]
Astrogliosis (also known as astrocytosis or referred to as reactive astrogliosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, autoimmune responses or neurodegenerative disease.