When.com Web Search

  1. Ad

    related to: energy required to liquify hydrogen

Search results

  1. Results From The WOW.Com Content Network
  2. Liquid hydrogen - Wikipedia

    en.wikipedia.org/wiki/Liquid_hydrogen

    Liquid hydrogen is being investigated as a zero carbon fuel for aircraft. Because of the lower volumetric energy, the hydrogen volumes needed for combustion are large. Unless direct injection is used, a severe gas-displacement effect also hampers maximum breathing and increases pumping losses.

  3. Hydrogen production - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_production

    Hydrogen can be generated from energy supplied in the form of heat and electricity through high-temperature electrolysis (HTE). Since some of the energy in HTE is supplied in the form of heat, less of the energy must be converted twice from heat to electricity, and then to hydrogen. Therefore, potentially less energy is required to produce ...

  4. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    Efficiency of modern hydrogen generators is measured by energy consumed per standard volume of hydrogen (MJ/m 3), assuming standard temperature and pressure of the H 2. The lower the energy used by a generator, the higher its efficiency would be; a 100%-efficient electrolyser would consume 39.4 kilowatt-hours per kilogram (142 MJ/kg) (higher ...

  5. Hydrogen storage - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_storage

    These Liquid Organic Hydrogen Carriers (LOHC) are hydrogenated for storage and dehydrogenated again when the energy/hydrogen is needed. Using LOHCs, relatively high gravimetric storage densities can be reached (about 6 wt-%) and the overall energy efficiency is higher than for other chemical storage options such as producing methane from the ...

  6. Liquefaction of gases - Wikipedia

    en.wikipedia.org/wiki/Liquefaction_of_gases

    Liquid nitrogen. Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders.

  7. High-temperature electrolysis - Wikipedia

    en.wikipedia.org/wiki/High-temperature_electrolysis

    High-temperature electrolysis schema. Decarbonization of Economy via hydrogen produced from HTE. High-temperature electrolysis (also HTE or steam electrolysis, or HTSE) is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials, as higher energy lowers needed electricity to split molecules and opens up new, potentially better ...

  8. Spin isomers of hydrogen - Wikipedia

    en.wikipedia.org/wiki/Spin_isomers_of_hydrogen

    Since "normal" room-temperature hydrogen is a 3:1 ortho:para mixture, its molar residual rotational energy at low temperature is (3/4) × 2Rθ rot ≈ 1091 J/mol, [citation needed] which is somewhat larger than the enthalpy of vaporization of normal hydrogen, 904 J/mol at the boiling point, T b ≈ 20.369 K. [10] Notably, the boiling points of ...

  9. Enthalpy of vaporization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_vaporization

    On the other hand, the molecules in liquid water are held together by relatively strong hydrogen bonds, and its enthalpy of vaporization, 40.65 kJ/mol, is more than five times the energy required to heat the same quantity of water from 0 °C to 100 °C (c p = 75.3 J/K·mol).