Search results
Results From The WOW.Com Content Network
Polyatomic ions often are useful in the context of acid–base chemistry and in the formation of salts. Often, a polyatomic ion can be considered as the conjugate acid or base of a neutral molecule. For example, the conjugate base of sulfuric acid (H 2 SO 4) is the polyatomic hydrogen sulfate anion (HSO − 4).
Ions consisting of only a single atom are termed atomic or monatomic ions, while two or more atoms form molecular ions or polyatomic ions. In the case of physical ionization in a fluid (gas or liquid), "ion pairs" are created by spontaneous molecule collisions, where each generated pair consists of a free electron and a positive ion. [5]
In chemistry, azide (/ ˈ eɪ z aɪ d /, AY-zyd) is a linear, polyatomic anion with the formula N − 3 and structure − N=N + =N −. It is the conjugate base of hydrazoic acid HN 3. Organic azides are organic compounds with the formula RN 3, containing the azide functional group. [1] The dominant application of azides is as a propellant in ...
Cations are positively (+) charged ions while anions are negatively (−) charged. This can be remembered with the help of the following mnemonics. Cats have paws ⇔ Cations are pawsitive. [23] Ca+ion: The letter t in cation looks like a + (plus) sign. [24] An anion is a negative ion. (An egative ion ⇒ Anion). [25]
Structure of the orthosilicate anion SiO 4− 4. A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula [SiO (4-2x)− 4−x] n, where 0 ≤ x < 2. The family includes orthosilicate SiO 4− 4 (x = 0), metasilicate SiO 2− 3 (x = 1), and pyrosilicate Si 2 O 6− 7 (x = 0.5 ...
The cation is always named first. Ions can be metals, non-metals or polyatomic ions. Therefore, the name of the metal or positive polyatomic ion is followed by the name of the non-metal or negative polyatomic ion. The positive ion retains its element name whereas for a single non-metal anion the ending is changed to -ide.
It is a polyatomic anion with the chemical formula H C O − 3. Bicarbonate serves a crucial biochemical role in the physiological pH buffering system. [3] The term "bicarbonate" was coined in 1814 by the English chemist William Hyde Wollaston. [4] [5] The name lives on as a trivial name.
Individual ions within a salt usually have multiple near neighbours, so they are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Salts usually form crystalline structures when solid. Salts composed of small ions typically have high melting and boiling points, and are hard and brittle.