When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra system of equations is an example of a Kolmogorov population model (not to be confused with the better known Kolmogorov equations), [2] [3] [4] which is a more general framework that can model the dynamics of ecological systems with predatorprey interactions, competition, disease, and mutualism.

  3. Kolmogorov population model - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_population_model

    The Kolmogorov model addresses a limitation of the Volterra equations by imposing self-limiting growth in prey populations, preventing unrealistic exponential growth scenarios. It also provides a predictive model for the qualitative behavior of predator-prey systems without requiring explicit functional forms for the interaction terms. [5]

  4. Predation - Wikipedia

    en.wikipedia.org/wiki/Predation

    A simple model of a system with one species each of predator and prey, the Lotka–Volterra equations, predicts population cycles. [143] However, attempts to reproduce the predictions of this model in the laboratory have often failed; for example, when the protozoan Didinium nasutum is added to a culture containing its prey, Paramecium caudatum ...

  5. Functional response - Wikipedia

    en.wikipedia.org/wiki/Functional_response

    When all prey species are at equal densities, the predator will indiscriminately select between prey species. However, if the density of one of the prey species decreases, then the predator will start selecting the other, more common prey species with a higher frequency because if it can increase the efficiency which with it captures the more ...

  6. Huffaker's mite experiment - Wikipedia

    en.wikipedia.org/wiki/Huffaker's_mite_experiment

    The solution to these equations in the simple one-predator species, one-prey species model is a stable linked oscillation of population levels for both predator and prey. However, when time lags between respective population growths are modeled, these oscillations will tend to amplify, eventually leading to extinction of both species.

  7. Theoretical ecology - Wikipedia

    en.wikipedia.org/wiki/Theoretical_ecology

    where N is the prey and P is the predator population sizes, r is the rate for prey growth, taken to be exponential in the absence of any predators, α is the prey mortality rate for per-capita predation (also called ‘attack rate’), c is the efficiency of conversion from prey to predator, and d is the exponential death rate for predators in ...

  8. Population dynamics of fisheries - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics_of...

    The model assumes that predators search for prey at random, and that both predators and prey are assumed to be distributed in a non-contiguous ("clumped") fashion in the environment. [ 30 ] In the late 1980s, a credible, simple alternative to the Lotka–Volterra predator-prey model (and its common prey dependent generalizations) emerged, the ...

  9. Evolutionary game theory - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_game_theory

    Examples include predator-prey competition and host-parasite co-evolution, as well as mutualism. Evolutionary game models have been created for pairwise and multi-species coevolutionary systems. [58] The general dynamic differs between competitive systems and mutualistic systems.