Search results
Results From The WOW.Com Content Network
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
To elucidate the connection with the triple product rule, consider the point p 1 at time t and its corresponding point (with the same height) p̄ 1 at t+Δt. Define p 2 as the point at time t whose x-coordinate matches that of p̄ 1 , and define p̄ 2 to be the corresponding point of p 2 as shown in the figure on the right.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Download as PDF; Printable version; In other projects Appearance. ... Redirect page. Redirect to: Triple product#Vector triple product; Retrieved from "https: ...
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
Download as PDF; Printable version; ... The scalar triple product of three vectors is defined as ... The vector triple product is defined by [2] [3] ...
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The Jacobi triple product identity is the Macdonald identity for the affine root system of type A 1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra. Properties [ edit ]