Search results
Results From The WOW.Com Content Network
Univariate is a term commonly used in statistics to describe a type of data which consists of observations on only a single characteristic or attribute. A simple example of univariate data would be the salaries of workers in industry. [ 1 ]
The five-number summary gives information about the location (from the median), spread (from the quartiles) and range (from the sample minimum and maximum) of the observations. Since it reports order statistics (rather than, say, the mean) the five-number summary is appropriate for ordinal measurements , as well as interval and ratio measurements.
Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample. This is an example of a univariate (=single variable) frequency table. The frequency of each response to a survey question is depicted.
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
Most uses of the Fisher test involve, like this example, a 2 × 2 contingency table (discussed below). The p -value from the test is computed as if the margins of the table are fixed, i.e. as if, in the tea-tasting example, Bristol knows the number of cups with each treatment (milk or tea first) and will therefore provide guesses with the ...
In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. [1]
In statistics, a univariate distribution is a probability distribution of only one random variable. This is in contrast to a multivariate distribution , the probability distribution of a random vector (consisting of multiple random variables).
In the simplest case, the "Hodges–Lehmann" statistic estimates the location parameter for a univariate population. [2] [3] Its computation can be described quickly.For a dataset with n measurements, the set of all possible two-element subsets of it (,) such that ≤ (i.e. specifically including self-pairs; many secondary sources incorrectly omit this detail), which set has n(n + 1)/2 elements.