Search results
Results From The WOW.Com Content Network
Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. [1]
When a fatty acid oxidation disorder affects the muscles, it is a metabolic myopathy. Moreover, cancer cells can display irregular fatty acid metabolism with regard to both fatty acid synthesis [44] and mitochondrial fatty acid oxidation (FAO) [45] that are involved in diverse aspects of tumorigenesis and cell growth.
Furan fatty acids are a group of fatty acids that contain a furan ring. To this furan ring, an unbranched carboxylic acid and, at another position, an alkyl residue are attached. Natural furan fatty acids are mono- or di-methylated on the furan ring. [1] Furan fatty acids can be found in a variety of plant and animal species.
Omega oxidation (ω-oxidation) is a process of fatty acid metabolism in some species of animals. It is an alternative pathway to beta oxidation that, instead of involving the β carbon, involves the oxidation of the ω carbon (the carbon most distant from the carboxyl group of the fatty acid). The process is normally a minor catabolic pathway ...
All animals are chemoheterotrophs (meaning they oxidize chemical compounds as a source of energy and carbon), as are fungi, protozoa, and some bacteria. The important differentiation amongst this group is that chemoorganotrophs oxidize only organic compounds while chemolithotrophs instead use oxidation of inorganic compounds as a source of energy.
The generation of reducing equivalents, in the form of NADPH, used in reductive biosynthesis reactions within cells (e.g. fatty acid synthesis). Production of ribose 5-phosphate (R5P), used in the synthesis of nucleotides and nucleic acids. Production of erythrose 4-phosphate (E4P) used in the synthesis of aromatic amino acids.
The isostere concept was formulated by Irving Langmuir in 1919, [3] and later modified by Grimm. Hans Erlenmeyer extended the concept to biological systems in 1932. [ 4 ] [ 5 ] [ 6 ] Classical isosteres are defined as being atoms, ions and molecules that had identical outer shells of electrons, This definition has now been broadened to include ...
Starvation response in animals (including humans) is a set of adaptive biochemical and physiological changes, triggered by lack of food or extreme weight loss, in which the body seeks to conserve energy by reducing metabolic rate and/or non-resting energy expenditure to prolong survival and preserve body fat and lean mass.