Search results
Results From The WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The eigenvectors may be found by the usual methods of linear algebra, but a convenient trick is to note that a Pauli spin matrix is an involutory matrix, that is, the square of the above matrix is the identity matrix. Thus a (matrix) solution to the eigenvector problem with eigenvalues of ±1 is simply 1 ± S u. That is,
In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])
Multi-qubit Pauli matrices can be written as products of single-qubit Paulis on disjoint qubits. Alternatively, when it is clear from context, the tensor product symbol can be omitted, i.e. unsubscripted Pauli matrices written consecutively represents tensor product rather than matrix product. For example:
The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...
The spinors are the column vectors on which these matrices act. In three Euclidean dimensions, for instance, the Pauli spin matrices are a set of gamma matrices, [i] and the two-component complex column vectors on which these matrices act are spinors. However, the particular matrix representation of the Clifford algebra, hence what precisely ...
Pauli matrices: A set of three 2 × 2 complex Hermitian and unitary matrices. When combined with the I 2 identity matrix, they form an orthogonal basis for the 2 × 2 complex Hermitian matrices. Redheffer matrix: Encodes a Dirichlet convolution. Matrix entries are given by the divisor function; entires of the inverse are given by the Möbius ...
The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.