When.com Web Search

  1. Ad

    related to: pauli matrices eigenvector 3x3 cube model

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    The eigenvectors may be found by the usual methods of linear algebra, but a convenient trick is to note that a Pauli spin matrix is an involutory matrix, that is, the square of the above matrix is the identity matrix. Thus a (matrix) solution to the eigenvector problem with eigenvalues of ±1 is simply 1 ± S u. That is,

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])

  5. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    Multi-qubit Pauli matrices can be written as products of single-qubit Paulis on disjoint qubits. Alternatively, when it is clear from context, the tensor product symbol can be omitted, i.e. unsubscripted Pauli matrices written consecutively represents tensor product rather than matrix product. For example:

  6. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    This is so the embedded Pauli matrices corresponding to the three embedded subalgebras of SU(2) are conventionally normalized. In this three-dimensional matrix representation, the Cartan subalgebra is the set of linear combinations (with real coefficients) of the two matrices λ 3 {\displaystyle \lambda _{3}} and λ 8 {\displaystyle \lambda _{8 ...

  7. Spinor - Wikipedia

    en.wikipedia.org/wiki/Spinor

    The spinors are the column vectors on which these matrices act. In three Euclidean dimensions, for instance, the Pauli spin matrices are a set of gamma matrices, [i] and the two-component complex column vectors on which these matrices act are spinors. However, the particular matrix representation of the Clifford algebra, hence what precisely ...

  8. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates (,,) of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices.

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).